Métropole 13 - Comment protéger la coque d'un bateau de la corrosion ? - 5 points

Calculatrice autorisée - $50\,min$

La corrosion est un phénomène bien connu des marins. Les bateaux dont la coque est en acier en sont victimes et doivent être protégés. Une méthode de protection consiste à poser à la surface de la coque des blocs de métal que l'on appelle « anodes sacrificielles ».

(b) Image provenant du sit

L'objectif de l'exercice est d'évaluer, à l'aide des documents ci-après, la masse de l'anode sacrificielle nécessaire à la protection d'un bateau.

Document 1 : Le phénomène de corrosion

La corrosion d'un métal M est sa transformation à l'état de cation métallique M^{k+} par réaction avec le dioxygène dissous dans l'eau.

Le métal perd un ou plusieurs électrons, il est oxydé selon la demi-équation rédox :

$$M \rightleftharpoons M^{k+} + ke^-$$

Une mole de métal oxydé produit k moles d'électrons.

Document 2 : Potentiels standard de différents métaux

Pour prévoir les réactions d'oxydoréduction, on peut s'appuyer en première approche sur l'échelle suivante, appelée échelle des potentiels standard. Tous les couples oxydant/réducteur peuvent être classés par leur potentiel standard.

Echelle des potentiels standard de quelques couples à $20\,^{\circ}C$:

Elément	Couple	Potentiel standard (V)
Plomb	Pb^{2+}/Pb	-0,126
Etain	Sn^{2+}/Sn	-0,138
Nickel	Ni^{2+}/Ni	-0,257
Fer	Fe^{2+}/Fe	-0,447
Zinc	Zn^{2+}/Zn	-0,760
Aluminium	Al^{3+}/Al	-1,67
Magnésium	Mg^{2+}/Mg	-2,37

Lorsque deux métaux sont en contact et peuvent être oxydés par le dioxygène, c'est celui dont le couple a le potentiel standard le plus faible qui s'oxyde : il constitue l'anode et protège l'autre métal qui ne réagira pas.

Document 3: Protection d'un bateau avec coque en acier

Lors de l'oxydation de l'anode sacrificielle, il s'établit un courant de protection au niveau de la surface S de la coque immergée. Sa densité de courant moyenne, intensité de courant par unité de surface, vaut : j=0,1 $A.m^{-2}$.

Ce courant a son origine dans la charge électrique échangée lors de la réaction d'oxydoréduction.

L'intensité I d'un courant électrique peut s'exprimer en fonction de la charge électrique Q échangée au cours de la réaction pendant une durée Δt :

$$I = \frac{Q}{\Delta t}$$

où, dans le système international, I s'exprime en ampère (A), Q en coulomb (C) et Δt en seconde (s).

Métropole 13 - Comment protéger la coque d'un bateau de la corrosion ? - 5 points

Résolution de problème

Questions préalables

- Un bateau possède une coque en acier donc composée essentiellement de fer. Ecrire la demi-équation de l'oxydation du fer métallique en considérant uniquement les couples du document 2.
- Citer en justifiant votre réponse, les métaux du tableau du document 2 susceptibles de protéger la coque en acier d'un bateau. Pourquoi l'anode utilisée est-elle qualifiée de « sacrificielle » ?

Problème

On désire protéger pendant une année la coque en acier d'un bateau par une anode sacrificielle en zinc. La surface de coque immergée dans l'eau de mer vaut $S=40\,m^2$. Une anode sacrificielle sur une coque de bateau doit être remplacée quand elle a perdu $50\,\%$ de sa masse.

Quelle est la masse totale d'une anode sacrificielle en zinc qu'on doit répartir sur la coque pour la protéger pendant une année ? Exercer un regard critique sur la valeur trouvée.

Données:

- masse molaire du zinc : $M = 65, 4 g.mol^{-1}$;
- une mole d'électrons possède une charge électrique $q = 9,65.10^4 C$.

Remarque:

L'analyse des données, la démarche suivie et l'analyse critique du résultat sont évaluées et nécessitent d'être correctement présentées.