EXERCICE I: À PROPOS DE L'ACIDE CITRIQUE (5,5 points)

L'acide citrique est un acide organique présent en particulier dans les agrumes. Produit à près de deux millions de tonnes par an dans le monde, ses usages sont multiples, notamment dans l'agro-alimentaire et dans l'industrie des cosmétiques, mais aussi dans les produits ménagers.

Les deux parties de l'exercice sont indépendantes.

1. La molécule d'acide citrique

L'acide citrique a pour formule semi-développée :

OH

|
HOOC —
$$CH_2$$
 — C — CH_2 — $COOH$
|
|
COOH

et pour masse molaire : $M = 192 \text{ g.mol}^{-1}$.

- 1.1. Reproduire la formule semi-développée de l'acide citrique. Entourer le groupe caractéristique de la fonction alcool.
- 1.2.L'acide citrique possède des propriétés acidobasiques en solution aqueuse. Identifier les groupes caractéristiques responsables de son acidité et justifier le fait que l'acide citrique soit un triacide.

2. L'acide citrique, un détartrant

On lit sur l'étiquette d'un sachet de détartrant à destination des cafetières ou des bouilloires :

Détartrant poudre : élimine le calcaire déposé dans les tuyaux de la machine. Formule : 100% acide citrique, non corrosif pour les parties métalliques. Contenance : 40,0 g.

Afin de vérifier l'indication de l'étiquette du détartrant, on dissout le contenu d'un sachet dans un volume d'eau distillée égal à 2,00 L. La solution ainsi obtenue est notée S.

On réalise alors le titrage pHmétrique d'une prise d'essai de 10,0 mL de la solution S par une solution aqueuse d'hydroxyde de sodium, $(Na^+_{(aq)} + HO^-_{(aq)})$, de concentration molaire égale à $(1,00 \pm 0,02) \times 10^{-1}$ mol.L⁻¹.

2.1. L'acide citrique étant un triacide, il est noté AH₃.L'équation de la réaction, support du titrage, est la suivante :

$$AH_{3 (aq)} + 3 HO^{-}_{(aq)} \rightarrow A^{3-}_{(aq)} + 3 H_{2}O_{(1)}$$

- 2.1.1. À partir de l'exploitation des courbes données en ANNEXE 1 À RENDRE AVEC LA COPIE, déterminer la concentration molaire d'acide citrique de la solution titrée.
- 2.1.2. Calculer le pourcentage en masse, noté *p*, d'acide citrique dans le sachet de détartrant.
- 2.1.3.L'incertitude Δp sur le pourcentage en masse p est donnée par la

relation
$$\Delta p = p \sqrt{\left(\frac{\Delta C_B}{C_B}\right)^2 + \left(\frac{\Delta V_{eq}}{V_{eq}}\right)^2 + \left(\frac{\Delta V_A}{V_A}\right)^2 + \left(\frac{\Delta V}{V}\right)^2}$$
.

La précision relative de la verrerie étant de 0.5 % et celle sur le volume équivalent estimée à 1 %, déterminer que l'incertitude relative sur pourcentage en masse p.

Le résultat obtenu pour le pourcentage en masse p est-il en cohérence avec l'étiquette ?

2.2. La solution de détartrant obtenue par dissolution d'un sachet contient des ions H_3O^+ libérés par l'acide citrique. En présence de tartre, constitué de carbonate de calcium solide de formule CaCO3, il se produit une réaction chimique dont l'équation s'écrit :

$$CaCO_{3(s)} + 2 H_3O^+ \rightarrow Ca^{2+}_{(aq)} + CO_{2(g)} + 3 H_2O_{(l)}$$

- 2.2.1. Proposer un argument pour expliquer que la solution détartrante est plus efficace lorsqu'elle a été préalablement chauffée.
- 2.2.2. Une bouilloire électrique, de puissance électrique 1500 W, porte 0,40 L d'eau initialement à la température de 18℃ à 85℃ en 1 min 20 s. Établir un bilan énergétique, sous forme de schéma, pour la bouilloire puis calculer le rendement énergétique de cette bouilloire.

Données:

Capacité thermique massique de l'eau : $c = 4,2 \text{ kJ.kg}^{-1}.\text{K}^{-1}$ Masse volumique de l'eau : $\rho = 1,0 \text{ kg.L}^{-1}$

$$T_{(K)} = \theta_{(C)} + 273$$

ANNEXE 1 À RENDRE AVEC LA COPIE

EXERCICE I : À PROPOS DE L'ACIDE CITRIQUE

Question 2.1.1.:

Titrage pHmétrique de la solution de détartrant

