Amérique du Nord 1997 - Champs de gravitation - ? points

Calculatrice autorisée - ?min

Partie A

On assimile le Soleil à une sphère de rayon r_S et de masse m_S présentant une répartition de masse à symétrie sphérique.

On suppose que la trajectoire du centre de la Terre autour du Soleil est un cercle de rayon R.

- 1. Donner l'expression littérale du champ de gravitation G_{0S} à la surface du Soleil. Calculer sa valeur numérique.
- 2. Donner l'expression littérale du champ de gravitation G_S en un point de l'orbite terrestre autour du Soleil. Calculer sa valeur.
- 3. Comparer la valeur du champ de gravitation G_S précédente à celle de G_{0T} du champ de gravitation terrestre au niveau du sol. Conclure.

Données:

- $r_S = 7, 0.10^5 \, km$; $m_S = 2, 0.10^{30} \, kg$; $R = 1, 5.10^8 \, km$;
- constante de gravitation : $K = 6,67.10^{-11} S.I.$;
- champ de gravitation terrestre au niveau du sol : $G_{0T} = 9, 8. N.kg^{-1}$.

Partie B

Soient m_L et m_T les masses respectives de la Lune et de la Terre, ces astres étant supposés à symétrie sphérique. Soient r_L et r_T leurs rayons.

On a les relations $m_T = 81 m_L$ et $r_T = \frac{11}{3} r_L$.

- 1. Calculer la valeur du champ de gravitation lunaire G_{0L} au niveau de son sol.
- 2. Il existe sur la ligne joignant les deux astres terres et Lune au point M où les champs de gravitation lunaire et terrestre se compensent.
 - a) Situer ce point M remarquable en calculant sa distance d au centre de la Terre. Donnée : Distance des centres des deux astres Terre-Lune : $D=380\,000\,km$.
 - b) Indiquer, sur le segment Terre-Lune, le domaine où l'action gravitationnelle d'un des deux astres est prépondérante.